General form of Chebyshev type inequality for generalized Sugeno integral

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Results of the Chebyshev type inequality for Pseudo-integral

In this paper, some results of the Chebyshev type integral inequality for the pseudo-integral are proven. The obtained results, are related to the measure of a level set of the maximum and the sum of two non-negative integrable functions. Finally, we applied our results  to the case of comonotone functions.

متن کامل

On the Jensen type inequality for generalized Sugeno integral

We prove necessary and sufficient conditions for the validity of Jensen type inequalities for generalized Sugeno integral. Our proofs make no appeal to the continuity of neither the fuzzy measure nor the operators. For several choices of operators, we characterize the classes of functions for which the corresponding inequalities are satisfied.

متن کامل

Berwald type inequality for Sugeno integral

Nonadditive measure is a generalization of additive probability measure. Sugeno integral is a useful tool in several theoretical and applied statistics which has been built on non-additive measure. Integral inequalities play important roles in classical probability and measure theory. The classical Berwald integral inequality is one of the famous inequalities. This inequality turns out to have ...

متن کامل

results of the chebyshev type inequality for pseudo-integral

in this paper, some results of the chebyshev type integral inequality for the pseudo-integral are proven. the obtained results, are related to the measure of a level set of the maximum and the sum of two non-negative integrable functions. finally, we applied our results  to the case of comonotone functions.

متن کامل

A Version of Favard's Inequality for the Sugeno Integral

In this paper, we  present a version of Favard's inequality for special case and then generalize it for the Sugeno integral in fuzzy measure space $(X,Sigma,mu)$, where $mu$ is the Lebesgue measure. We consider two cases, when our function is concave and when is convex. In addition for illustration of theorems, several examples are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Approximate Reasoning

سال: 2019

ISSN: 0888-613X

DOI: 10.1016/j.ijar.2019.09.005